Classification of hypergeometric identities for pi and other logarithms of algebraic numbers.
نویسندگان
چکیده
This paper provides transcendental and algebraic framework for the classification of identities expressing pi and other logarithms of algebraic numbers as rapidly convergent generalized hypergeometric series in rational parameters. Algebraic and arithmetic relations between values of p+1Fp hypergeometric functions and their values are analyzed. The existing identities are explained, and new exhaustive classes of new ones are presented.
منابع مشابه
APPROXIMATION OF AN ALGEBRAIC NUMBER BY PRODUCTS OF RATIONAL NUMBERS AND UNITS CLAUDE LEVESQUE and MICHEL WALDSCHMIDT
We relate a previous result of ours on families of diophantine equations having only trivial solutions with a result on the approximation of an algebraic number by products of rational numbers and units. We compare this approximation, on the one hand with a Liouville type estimate, on the other hand with an estimate arising from a lower bound for a linear combination of logarithms. American Mat...
متن کاملTranscendence Measures for Exponentials and Logarithms
In the present paper, we derive transcendence measures for the numbers log a, e, aP, (log aj)/(log 02) from a previous lower bound of ours on linear forms in the logarithms of algebraic numbers. Subject classification (Amer. Math Soc. (MOS) 1970): 10 F 05, 10 F 35
متن کاملQuadratic relations between logarithms of algebraic numbers
A well known conjecture asserts that Q-linearly independent logarithms of algebraic numbers should be algebraically independent. So far it has only been proved that they are linearly independent over the field of algebraic numbers (Baker, 1966). It is not yet known that there exist two logarithms of algebraic numbers which are algebraically independent. The next step might be to consider quadra...
متن کاملAlgebraic transformations of Gauss hypergeometric functions
This paper classifies algebraic transformations of Gauss hypergeometric functions and pull-back transformations between hypergeometric differential equations. This classification recovers the classical transformations of degree 2, 3, 4, 6, and finds other transformations of some special classes of the Gauss hypergeometric function.
متن کاملIdentities of the Chebyshev Polynomials, the Inverse of a Triangular Matrix, and Identities of the Catalan Numbers
In the paper, the authors establish two identities to express the generating function of the Chebyshev polynomials of the second kind and its higher order derivatives in terms of the generating function and its derivatives each other, deduce an explicit formula and an identities for the Chebyshev polynomials of the second kind, derive the inverse of an integer, unit, and lower triangular matrix...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 95 6 شماره
صفحات -
تاریخ انتشار 1998